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THESIS ABSTRACT

NONLINEAR ATTITUDE STABILITY OF A DUAL-SPIN SPACECRAFT

CONTAINING SPHERICAL DAMPERS

.5 Paul Kenneth Winfree

Master of Science, June 8, 1984

B.A.E, Auburn University, 1983

69 Typed Pages

Directed by John E. Cochran, Jr.

A perturbation formulation and the generalized method of averaging

are used to investigate the attitude motion of a synnetric dual-spin

spacecraft which contains two sphe ical dampers arbitrarily located on

the axisymmetric rotor and platform (one damper on each). The spherical

dampers are intended to represent fully filled fuel tanks. The motions

of these spherical dampers are treated as sources of perturbations which

affect the otherwise torque-free attitude motion. Approximate attitude

motion equations, valid through first order in the ratios of the damper

moments of inertia to the spacecraft soment of inertia, are obtained.

The generalized method of averaging is used to find an approximate

analytical expression for the nutation angle for the case of equal

damper moments of inertia and a constant speed rotor. This approximate

expression is used to investigate the stability of the spacecraft

attitude motion. Conditions for stability are presented and are found

to agree well with a previous linear and energy-sink analyses obtained
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for small nutation angles. Results obtained using the approxi.ate

analytical expression for the nutation angle are compared to

corresponding numerical solution to the full set of nonlinear equations

for several choices of system parameters and very good agreement is

found, even for large nutation angles.
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A perturbation formulation and the generalized method of averaging

are used to investigate the attitude motion of a symmetric dual-spin

spacecraft which contains two spherical dampers arbitrarily located on

the axisymmetric rotor and platform (one damper on each). The spherical

dampers are intended to represent fully filled fuel tanks. The motions

of these spherical dampers are treated as sources of perturbations which

affect the otherwise torque-free attitude motion. Approximate attitude

motion equations, valid through first order in the ratios of the damper

moments of inertia to the spacecraft moment of inertia, are obtained.

The generalized method of averaging is used to find an approximate

analytical expression for the nutation angle for the case of equal

damper moments of inertia and a constant speed rotor. This approximate

expression is used to investigate the stability of the spacecraft

attitude motion. Conditions for stability are presented and are found

to agree well with a previous linear and energy-sink analyses obtained
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for small nutation angles. Results obtained using the approximate

analytical expression for the nutation angle are compared to

corresponding numerical solution to the full set of nonlinear equations

for several choices of system parameters and very good agreement is

found, even for large nutation angles.
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I INTRODUCTION

Spacecraft which contain spinning rotors and nominally despun

- platforms are called "dual-spin" spacecraft. In such a dual-spin

configuration, the rotor provides gyroscopic stiffness for stability

while the despun platform provides an oriented platform which usually

contains scientific instruments, antennas, solar panels, and other

components which must be oriented in a "fixed" direction.

A classical rigid-body analysis of the attitude stability of a

spinning single body spacecraft indicates that a state of steady spin of

the spacecraft is stable if rotation is about its principal axis of

either minor or major moment of inertia. This classic stability

"-: .criterion has been known to be inadequate since 1958 when the

unanticipated instability of motion about the minor spin axis of the

first U.S. satellite, Explorer I, was observed. The explanation of this

instability is credited to R. N. Bracewell and 0. K. Garriott, who

modeled that spacecraft as a semirigid body which dissipated energy, and

which therefore would approach the state of minimum energy which

corresponded to rotation about its axis of maximum moment of inertia.1

In 1964, Landon and Stewart demonstrated that the motion of the

spin axis of a symmetric dual-spin spacecraft with a despun platform may

be stable if the spin axis is the axis of either maximum or minimum

moments of inertia provided an energy dissipation device (or damper) is

placed on the despun platform.2  Independent development of the

o7,.1
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dual-spin stabilization concept by A. J. lorillo of Hughes Aircraft

Company extended the scope of analysis to axisymmetric dual-spin

vehicles with energy dissipating dampers on both the rotor and

platform.3  This extension allowed for the analysis of spacecraft of

realistic complexity, since, in reality, internal motion on both the

rotor and platform cause energy dissipation.

Although the problem of attitude stability of dual-spin spacecraft

has been studied for more than two decades, it continues to be an area

in which more can be learned. Several different methods can be used to

study the attitude motion of a specific spacecraft, but if the type of

configuration permits, a conventional linear stability analysis is a

convenient first step. A linear stability analysis of a specific dual-

spin spacecraft which contains arbitrarily located spherical dampers has

been presented by Laskin, Sirlin, and Likins.4 They also obtained cor-

roborative results using an energy-sink method. In applying both

methods, small nutation angles were assumed. An alternative approach to

the energy-sink method is available, since when the energy dissipation

-- is slow enough to justify the use of the energy-sink method, a pertur-

bation method may be often used effectively. An analysis of this type

was used by Cochran and Shu to analyze the nutational motion of a dif-
.4..

ferent spacecraft configuration and they obtained very good results.5

The model considered in Reference 4 is of the "ideal" type for

.. analysis because it is axisymmetric and the energy dissipating devices

on the rotor and platform are such that energy can be dissipated

without changes in the inertia properties of the spacecraft. Rowever,

because the spacecraft attitude motion is nonlinear, the linear analysis

41
4.,.
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does not, and cannot be expected to, predict correctly the attitude

stability of the spacecraft with respect to substantial perturbations in

initial conditions. Laskin, et al., also found, via simulation on a

digital computer, that in some cases, stability is dependent upon the

ratio of the spacecraft's axial and transverse moments of inertia, a

parameter which does not appear in the linear analysis equations.4

This thesis presents a "perturbation analysis" of the attitude

motion of the type of spacecraft investigated in Reference 4. Following

to some extent Cochran and Shu,5 the motions of the spherical bodies are

treated as perturbations of the attitude motion and the generalized

- --method of averaging is used to find an approximate analytical expression

for the nutation angle for the case of a constant-speed rotor. This

expression approximates the nonlinear characteristics of the spacecraft

motion and also contains the inertia ratio that is missing from the

linear stability analysis. The expression obtained for the nutation

angle is used to analyze the stability of the space:raft's attitude

motion.

.," The full nonlinear equations of motion are developed in Appendix A% r

and numerical solutions of these equations and are used to verify the

results obtained using the approximate solution.

The equations used in the generalized method of averaging are

developed by treating the changes in the angular moment of the

spherical dampers as perturbing torques. The platform-fixed components

of the total angular momentum of the spacecraft are used as dependent

variables along with the components of angular momenta of the

dampers and the rotor's spin axis angular momentum. Euler angles which
'p,..._,
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define the attitude of the platform are then used to make a change of

variables which transforms the angular momentum into equations of the

"normal form" required to use the generalized method of averaging.6 ,7

A brief description of the generalized method of averaging is given in

Appendix B.

The generalized method of averaging is used to produce an

expression that approximates the nutation angle of the spacecraft's

attitude motion when the rotor is spinning at a constant speed with

respect to the platform. This expression, which contains all the

spacecraft's inertia and damping parameters, is used to determine

regions of stable and unstable spacecraft attitude motion in the damping

-.. parameter plane for several spacecraft inertia parameters. Results

obtained using the solution for the "averaged" nutation angle are also

compared to those found by numerically integrating the full set of

nonlinear equations for several "constant-speed" rotor cases.

-4
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II. SPACECRAFT MODEL

The type of spacecraft considered in this investigation is a highly

symmetric dual-spin configuration such as that depicted in Fig. 2. The

physical model of this type spacecraft consists of two axisymnetric

rigid bodies, a nominally despun platform and a rapidly spinning rotor,

connected by a shaft running along their collinear axes of symmetry.

Both the platform and rotor contain arbitrarily located spherical

dampers. These dampers may be thought of as fully loaded fuel tanks

which are modeled as rigid spheres with constant surface damping

coefficients. 4 Energy dissipation occurs when the spherical dampers

rotate with respect to their respective containers and is due to the

torques which oppose such motion of the dampers. The spherical nature

of the dampers allows for energy dissipation with no change in the

inertia properties of the spacecraft.

In Fig. 1, the Cx1 x2x3 coordinate system has its origin at the

-.. center of mass of the spacecraft and rotates with the platform. The

unit vector triad (e1 ,e2 ,e3 ) is attached to Cx x2 x3 . The angular

velocity of the rotor with respect to the platform is Q = e

In this analysis, the translational motion of the spacecraft is not

considered and its attitude motion is assumed torque free.

5
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III. EQUATIONS FOR USE IN THE GENERALIZED METHOD OF AVERAGING

~Attitude Motion of theSpacecraft

The equations for the attitude motion of the spacecraft may be

developed in terms of H, the angular momentum of the system. The

platform-fixed components of H are

"S, 1 t 1 P P1 1 R Rl I1

I = W + Ip(W W ) + IR(W W (Ib)
ad 2 t 2 P P2 2 R R2 2~"; " ' and

H JPw + J(3+ ) + I (W +W3) + I (W °R + + ) " (ic)
3 P 3 R 3 p P3 3 R R3 3

The angular momentum of the dampers has platform-fixed components

hpi_ I C( i+W i ) , for i - 1,2,3 , (2a)

hRi II(W i+Wi) , for i - 1,2 , (2b)

and

hR3 IR(, (2c)

,-." Hence, Eqs. (C) may be rewritten as

HI  I 2t1 + hP1 + h Rl (3a)

H 2 1 t 2 + hP2 + hR2 (3b)

and

H JP W 3 + h 3 +hR + h (3c)

4... 7
a-'%
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where h JR(W 3+;),_ is the symmetry axis component of the rotor's

angular momentum.

If the no angular momentum compor nts of the platform and rotor

dampers are combined into single terms, i.e.,

{hi} - {hpi} + {hRi} , for i = 1, 2, 3 (4)

then the following expressions for wI' 2 and result from Eq. (3).

W 1 M (Hi-h 1 )/It ' (5a)

W2 = (H 2-h2 )It (5b)

and

W3 = (H 3-h-h3)/JP (5c)

When Euler's moment equation is applied to H, the following

equation is obtained:

0

M - H + wxH (6)

Here, H is the time rate of change of {H} as seen in the CXX

system and M is the external torque about the spacecraft's center of

mass. Since the motion of the spacecraft is considered torque free, the

following matrix equation may be obtained from Eq. (6).

{Ift= -[IWi {H} (7)

where {H} = [H1 H2  3T and

0 .-W3  *

-P 2
I

0
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9

Equation (7) may be expanded after the approximations for wl, W2,

and w3 are substituted to obtain

H [H3 -.T2 - H h + H h2/I (9a)
23 12 3/ p 32 t'(a

-"H2  [-) - h/JP] + Rh 3/Jl - H hl/It

p t
and

A3 H2hI/I t - Hlh 2 /1t . (9c)

Letting

AinH 3( - -- , (10)
p t p

Eqs. (7) may be rewritten as

- H2A - H2h3/JP + H3h2/its (11a)

-HA + H h3/JP - H3h/It (Ub)

and

H3 = 2 h /t - H1h 2 /It. (llc)

Now, refer to Fig. 2 which shows the fixed reference frame CXYZ

with the constant angular momentum vector, H, aligned with the Z axis.

The spacecraft axis system CxIx 2X3 is obtained from the CXYZ system by

a sequence of rotations through the Euler angles T, 0, and 4. It can be

seen from Fig. 2 that the Euler angles can be used to write the

components of H in the form

H H sinO sint, (12a)

H a H sinO cosO (12b)

and
H3 a H cosO. (12c)

,,* . -* * "," **"-- 4.-."- " ", '- " " - ' . .• .... 
- " " - ' "
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By differentiating the above equations with respect to time, one finds

that

ii= 6 cos sin + Hi siune cost, (13a)

H = H6 cose cost - Hi sin() sint (13b)

and
3 -H6 sinG. (13c)

Equations (ii), (12) and (13) may be used to obtain the following

equations:

e cosO sinS + sin cost

h 3 h
Asinev cost - siecos§+ 2 osS (14a)

.,cos cost o- sine sino (

h h-

.'and

3 sie - sinG- _ s si (1c)

... Equations (14)b1) and (1) maye be usoled or tand rhespetoively

bHence,

- - cco(

*4; t
and

hh

A sn +2 ( sincos -i1 sincosi. (15b)

S '

*,, . 2 coe os -$ ss sinea

hI  h

"' and

*?' inA-T Csin sine os/i n G)s. (15c)

Eqain 1b)ad(4)my hnb ove o n , epciey

.ence

:a5m

-... . . . . . . . . . . . . 5
" *:- .. h3*J. . .5 . ** *~*~*'.
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These are two attitude equations that will be used later in applying the

generalized method of averaging.

From Fig. 2, it can be shown that the kinematic equations for the

Euler angles are:

G= 1 cost - W 2 sin -, (16a)

W - cose (16b)

and

W 1( sint+w 2 cos¢)/sirG. (16c)

At this point it is convenient to find approximations for wl, w2,

and w3. The approximations are found by assuming that each of the

damper inertias is much smaller than any of the spacecraft inertias. By

invoking this assumption, approximations for w, w 2, and w 3 may be

obtained from Eqs. (5). These approximations are

W. P (17a)
I t

- -2 (17b)
2 1t

and

3= (H3-h)ZJ P . (17c)

If the above approximations are used in Eqs (16), the following

equations for 4, $, and 1 may be found:

1 cos 2.± *- sin§ + &Wc, (18a)
% t t

' (H3 -h)/J - cos + 1 (a) (18b)

ando* -.

,,,'.,~*
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* H1  H9 -

(2 sint + a cost /sinE) + 18c)
It It

By substituting values for Hl, H2 , and H3 from Eqs. (12), one gets the

attitude equations

"0 + Q(a), (19a)

$ C() (19b)

and

L + ("(a) (19c)

I tI

In the application of the generalized method of averaging the angles 0

and T are referred to as "fast" variables because the zeroth-order

approximations to their time rates of change are non-zero. The angle 0

is called a "slow" variable, because to zeroth-order it is constant.7

If the terms of (a) are disregarded and A = !L then the zeroth-
t

order approximation for the Euler angles are

0 - 0o, (20a)

. = At + b (20b)

and
S Xt + T .(20c)

These approximations will be used later in the development of the

zeroth-order approximations for the attitude motion of the dampers.

Attitude Motion of the Platform Damper

To develop the desired equations for the platform damper attitude

motion in the desired form, it is necessary to use the inertial

components of angular momentum. If {kp} is used to denote the

matrix of inertial components of the angular momentum vector of the

-. ,, 6

S.'.m -mW d , ll, ~ m~m l~ l
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platform damper and a 3-1-3 rotation through the angles T, 0, and 0

is used to transform from inertial components to platform-fixed

components, then

{h p} = [A] {k p} (21)

where [A] is the transformation matrix,

cost sinO 01 [1 0 0 COST! sin! 01

[A] -sino cost 0 0 cosO sinO -sin cosT 0 (22)

0 0 1, o -sin cosoJL , 0 i

In its expanded form the [A] matrix is

cost cosT cost sin!

-sint cose sinT +sint cosO coS s

(A] = (23)
-sint cosT -sinr sing cost sine
-cost cose sin +cost cose) cosT

sine sin -sinO cosT coso

Euler's moment equation may be applied using the angular momentum of the

platform damper to obtain the vector equation,

0

h +w x h T -C w (24)
A-p - -p -p p-p

By writing Eq. (24) in matrix form and substituting {wp} 1 h~} -{w},

p
one may obtain the results, o,

CpI;p} w p {p {}-[ ] {hP1. (25)

If Eq. (21) is now differentiated with respect to time, a second

equation for {h} is found to be

-".€, .'.i.r , '.,,',..',.. .- ' .. '..,'.-' ,' -'. -. '--,J .- -"-." " ., .. " ." .' .'-.'_."- " , '... ' -.. V .'.., ', .. -,' ,'. .. ; '. .% _ '. .' .'. '.-'.. . .') ..
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S{6} = [] {kj} + [A] {1p}. (26)

However, it can be shown8 that

[i1 - - [( 1 [A]. (27)

Hence, Eq. (26) may be written in the form,

ly =-[wl [A]{kP} + [A] {k}. (28)

Now, by equating Eq. (28) and Eq. (25) and using Eq. (21) for

jj { }one may obtain an expression for {1.}; i.e.,

{ =- C {kp} + Cp[A]Tjw} . (29)

A solution to Eq. (29) may be assumed in the form,

""'...-C Pt/I P

{k%} - [ap} e •(30)

If Eq. (30) is differentiated with respect to time, a second form

for , viz,
iC _ t/I r Cp

{k} - {P}e CP {k,}. (31)
t

Now, by equating Eq. (29) and Eq. (31), one finds that

a cp t/I (32)
.,pl - CP [A]T{w}

Equation (32) may be expanded to obtain

c Pt/IP

' 1 M Cpe (a1 1W1 + a2 1 W2 + a3 1 W 3) (33a)

c t/IP

P2 = Cpe (a12w1 + a22 2 + a32 W3) (33b)

and
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3 pe (a13 W + a 23W2 + a33 W ) (33c)

where aij are the elements of the [A] matrix.

If the approximations for 0, 0, and If given in Eqs. (20) and the

approximations for w1, w2, and w3 given by Eqs. (17) are used in Eqs.

(33), it can be shown, after some algebra, that

C p t/Ip

I = C p A z e sini, (34a)

"P2 = -Cp A z e P P cos (34b)

and
Cpt/Ip

.1p - C p)z 2 + x(H -h)/J le , (34c)

- where z - sine and x = cosO.

The solutions to the above equations, integrated from t=0O to tl=t,

are

-CP {eCPt/I(P sin -Acos!) + A} + a (35a)

In ( P)2+X2

(IP

-CpAz CPt/I PC Cp
• f e 2 e p cos'Y *sinY) - + (35b)

P)+2P P

P
and

aP3 IP{Az 2 + xH3-h)/JP}(e -i) + a30. (35c)

When used in Eq. (30), the above expressions give the inertial

components of the platform angular momentum as functions of time and the

fast variable Y=Xt. These components are

S. .. .• . . .' -%
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C pAz C -CP t/Ip) -Cp t/Ip
. kP I P in? -Xcos Xe +a p 0e (36a)

•C -' -CAz Cp Cp e-Cp t/I) P -C pt/I p

k 2  pcos' +Xsin - e + P20

T-) +X2 P(36b)

and P
-cpt/Ip -Cpt/Ip

kP3 [XZ2 + x(H3 -h)/Jp](1-e C + aP3 0 e - P . (36c)

Armed with an expression for the inertial components of angular

momentum, one may find the relative components from Eq. (21), which in

component form are

hpl all1kPl + a12 kP2 + a3kP3(37A)

hP2 m a21 kP1 + a22 kP2 + a23 kP3  (37b)

and
hP3 ' a3 1kl + a3 2 kp2 + a3 3 kP3  (37c)

If Eqs. (37) are expanded using the approximations for 0, T, and 0

V. in the transformation matrix and the transient terms in {kp} are
ao

neglected, then it can be shown, again with some algebra, that:

h P [-XcosO -x sin

+ I z sint [Xz 2 +x(H3 -h)/JP ]  (38a)

SCpzA Cp

h (XsinO - p x cosb]
P2 (C /1 57772

P p

+ zcos¢ [)z2 + (38b)

*m and

5'.

a..j

S S. .- -- a-, . ......... ...-... : .....:*.....,= ., * ..... ,........ .-.:. ... ,...........% ,,, . . . .'. ,,.
,.t.Im..i. ,.lldill ii li . S S U "
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h (CP z + I x[Xz 2 + x(H3-h)/J] (38c)

~P3 -(C /I + =A P 3 p

The above expressions give the angular momentum components of the

platform dampers as functions of the slow variable 0 found in x and z

and the fast variables 0 and IF.

Motonof he RotoDamers

The equations for the rotor damper motion may be developed in the

same manner as those for the platform. If {kR} denotes the inertial

,4- angular momentum, then the same transformation exists for the rotor

dampers, i.e.,

{h} = [A] } (39)

If a vector {} is defined such that

1;1 _ (0, 0, ;)T , (40)

~. .Io

then Eqs. (2b) and (2c) can be written in matrix form as

{hRt Iw lR } + IRIwI + IR{*} (41)

Euler's moment equation applied to the angular momentum of the rotor

.gives

h +w xh TR  . (42)

Switching to the matrix notation and substituting

{twR} hR - - {}, into Eq. (42) yield

{R} -CR/IR {hR} + CRclz} + CRI;} - [w] {hR " (43)

By differentiating Eq. (39) with respect to timeone obtains

.. . . . .. . . . . ....... ........ . -" -'-" - * --........ ... ... ... ... ... ... ... ... ... ...
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{hR} = [X j{RI + [A] {kR} = - w] [A] {kR} + [A] {(44)

Now, by equating Eqs. (43) and (44),it follows that

{rc} = - CR/IR {kR + CR[AT 
+ CR [AT (45)

As with the platform dampers, the solution for {kR is assumed to be

-C Rt/I 
R

{kR- = {aRle (46)

By differentiating Eq. (46) with respect to time and equating the

.,' result to Eq. (45),one may obtain the following expression for { RI:

1;1 CR t/Ie R[A {[ } + CRe CRt/IR[A
T j ; (47)

If the approximate expression for {w} and the approximations to 0, b,

and T are used in the transformation matrix in Eq. (47) then the results

for the j are

C t/I

CRz(A+;)e sinT (48a)

a = -C z(A+ R R (48b)

2 R *) /os'
and

ia zR3 ' CR[Xz2 + x(H 3-h)/jP + x $]eCR . (48c)

Equations (48) may be integrated from t0=0 to tl-t to get the

following results:

aR C R z(A+) C Rt/I CR sin! -X + +,. a 1 " C/Rz+ Iz{e R iT Xcos'!) +X} + tl , 4a

*(C R/I R)z R R10' (49a)

-c z(A+$) C t/I C CR

*a R z+X/eR COSTI +XsinY) - R- +a
R2 (CR/IR)L + I eR Ra 20 (49b)

L..%

**'= %..*

S ., .. . . ... . .. . ... . . .. . . .. , . .. . , .. . . .. .. .. . .. ., , , , , .. .. ,...;o .. , . .. : . ,. , . ,, .- ., :
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and

--- h)J.... CRt/iR

aR3 = IR [Xz 2 + x (H3 -h)Jp + x ( -1) + aR3  (49c)

When used in Eq. (46), Eqs. (49) provide the inertial components of the

angular momentum of the rotor damper. These are

CRz(A+) CR  -CRt/IRI -cRl tI ,

k~R [-/E) siny' - xcosI +. Ae RtI]+ a e t R

4. and

-R2  - CRz(A+$) CR CR -CR t/IR] -CR20

C 1) L cosY + XsinT -(5e0+Cc

- kR2 -(C R/I R )Z. 4 R [R co Xi -R20e (50b)

kR3 = R [Xz 2 + x(H 3 -h)/J P + 1(l-e CRt/IR + L eR R (50c)

'- From these expressions for the inertial angular momentum components, one

may find the platform-fixed components of the angular momentum by using

- Eq. (39) with the zeroth-order approximation to the transformation

matrix and {j}. The results are

h.: -CA'z(A+) CR
hRl (CR/I )Z + X x sin o

Ri R R R

+ IRz sinAt[Az 2 + x (H 3-h)/Jp + x ,(51a)

hR2-" C z(A4 ) CR
h.T 2(c/I) + [si - I-- x cosO

R R R

+ 'K z cosAt (Xf+x(HP-h)/JP + x (51b)

and

C2 z2 (A+() HIR... . hR ('/R Tz +l> + IRxX z2 + x((H3-h)/! + x €1(51c)

R3 (C R/I RL + X' R ~3 '.x(5c

KR'

ea ,
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Equations (51) are zeroth-order approximations to components of the

angular momentum of the rotor damper as functions of the slow variable 0

and the fast variables 0 and T.

Transformation of the Equations to Normal Form

To apply the generalized method of averaging, it is necessary to

have equations of the form

[;I = E Ix 2 1 + (52a)

ty} - {yo} + + 2 {Y2 } + (52b)

where e is a small constant, {x} is a vector of slow variables, {y} is a

vector of fast variables, and the vector functions {Xij and {Yj} are

periodic functions in the elements of {y} with a period of 2w. 7

To arrive at the desired normal form, one must combine the

angular momentum solutions to get

h-X-"s CpzA CR z(A+$)
h - cos /Ip + X + R/IR)Z + Xz ]

" C A/IP C2z (A+ IR I

- sint [ cC/p + (R/I
I(C ) + XL (C I/ 3 7

- - P R R

+ z sint [A z2 + x(H3-h)/JP ] iIP+IR + IR sinO, (53a)

CpzA CRz(A+ $ )
sint [(C + XZ]h%2+ X (C//I ))

2 p R R

CzA/I C2z(A+$)/I

P P RR R
i:.';-xcost [Cp I P)y + XLZ  R (/ITR) + =X]

+ Z cost [Xz 2 + x(H3-h)/J ](Ip+IR ) + IRxz$ cost (53b)

3......-.

% 6
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and

C2 h3 =z/I~ C2 z(A+; /IR
3 C /I Y/ (CR/IR)z + X

A+ xXz 2 + X(H 3-h)/JP](IP+ I R) +IR x2; (53c)

The above equations for hl and h2 along with the approximation for 0

given by Eq. (15a) may be used to obtain the result,

0 = [c/P ) + p, + )Z7 +(XA454
t C P/IP (CR[IR

Now, it is assumed that the inertias of the dampers are equal and

a -IP/It IR/It is adopted as the small parameter. Since

Cp/it = (I /I )(C /I) a C /1~ (55)

and

CR/it (I/ )(C /I) a CR/I1 (56)

Eq. (54) may be written in the form

C a XZA/I~ X +CRX z(A+;)/l R (
(C (c/1 5 +) 2 (CR/IR7 + xL]

Now, because z and A in the above equations are functions of x, it is

chosen as the slow variable. From x = cosO it follows that

x = ~sine - z (58)

Hence, 0 /z and Eq. (57) may be replaced by

dC PX 2 A/I P C RXz2 (A+;)/IR

a(C /I )I- + =X (C /1 +74 (59)

Pp PP R R

-p."
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Equation (59) is one of the desired equations in normal form. The

other two are

$=A + (Y~a) (60a)

and

=X + 6()(60b)

Equations (59) and (60) are in the required normal form for the

generalized method of averaging. Only Eq. (59) is expanded because it

is the only one required to investigate nutational motion.



IV. FIRST ORDER SOLUTION FOR THE NUTATION ANGLE

The first-order solution for the nutation angle, in terms of x, can

now be developed by applying the generalized method of averaging to Eq.

(59). Initially, the following nondimensional ratios must be defined:

-p = 
(60).. az-+ ),I-

NK. and
" -' 6 R 

( 1
UR = 6/ - V (61)

R

4 . Then Eq. (59) may be written as:

x at-i-z 2 A - uRz2 ( 2 (62)

At this point one may apply the generalized method of averaging to

- . Eq. (62). Referring to the procedure in Appendix B,

2wr 2w-
.*, Al(X) r f f X1 (x,0,')d did (63)

,1 0 0
where

X= -upz2A - URZ2 (A+€)

Since XI does not contain periodic terms in I and Y, the averaged

equation to first order in the new parameter variable a is

x a[-uz 2 A - U Rz(A+$)] (65)

where z and A are obtained by replacing x with x in z and A.

Equation (65) may be solved exactly by separating variables and using

42
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partial fractions. Befor proceeding, however, it is necessary to

approximate A by using

A -HQ1-+ -h/JP (66)
SP tP

and h JR(W3+l).

The approximation to w3 given by Eq. (17c) may be used to obtain

h J R[(Hx-h/J + $] + 6(a)

Hence,
o JR ) R

-'%':h = Hx(.J + JP$(JP+j-) + C(a) (67)
jP +R P R

The above expression may be substituted into Eq. (66) to obtain

- - i
_.-1 Hx R R (68)T -) -r r $& + j +P t P P R P R

-" In terms of H/It, ;, and inertia ratios, one has

II:L ,_"." "- ; ( -a (69 )
•~ "." t •O D

where a JR/It and p J Jp/I .

When Eq. (69) is used in Eq. (65), it is found that

- ~at~+i)(q p-) Hi~ +4~ -('p R3 (70)

Equation (70) can be rewritten in the form,

(.,7
i 'a'( Hx - (1-i )(a+b ) ,( 1

.- %

................................................................
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where

a ( ap (72)

and

b l a(u_+UR)('" H (73)-< R a - - T

Now, by separating variables, using partial fractions and integrating

Eq. (71) with x = x at t - 0 the following solution may be obtained.

t -C1 ln[(l-x)I(-xo)] + C2 tn[(l+x)7(I+xo)J

+ C3 ,tn[(a+bx)/(a+bx)] (74)

where

1
1 2 Za+b

1

2 2(a-b)

and
C 3  =b

9A

.

..* ' *
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V. STABILITY CONDITIONS

If the spacecraft's nominal attitude motion is asymptotically

stable, the "averaged" nutation angle will decay to zero as time

increases. Considering Eq. (71) for asymptotic stability, one sees

that it is necessary that x should be positive. This criteria may be

expressed as

o.1

(1-x2 )(a+bx) > 0. (75)

Since the term Cl-x 2 ) is always positive for nutation angles greater

than zero, it is necessary that

a + bx > 0. (76)

The substitution of the explicit expressions for a and b into Eq. (76)

• . provides the inequality,

.,.,, f ,(U R .-1Up a)

x H/ ip (77)
t R

If the averaged value of x is used, then H3 = Hx, and the condition for

stability is

:-'*13It(up +U R) (oo-1) > $ (UeR-U pa) . (78)

If the stability of the nominal spacecraft otion in which the platform

is inertially fixed and the rotor spins at a constant rate is

considered, then, for small nutation angles

27

..",F
"."%

-, -".".*_ ... ,,- -.. •""" - "- " - " " "- ., . """"". " -' -'"-" " "-", 4" """ . .""""- , , ; ".-p' ., " - ," - "i?-



28

H3!I t = H/It  a*, (79)

where a* a + a and a = is a constant, then Eq. (78) may be put

into the form,

U' (C+p-I + ala*) + 11R (+P-lp/a*) > 0. (80)

For a specific set of inertia parameters, Eq. (80) can be used to

define regions of stability in the 6- 6R plane.

-o'.'

%4.J %,
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VI. RESULTS

Small Nutation Angles

If condition (80) is examined in the limiting case where 6R0, the

requirement for stability is found to be

'"ta + P + 0/0* > 1 , (81)

which is always true in the small "a" approximation. This case

corresponds to energy dissipation on the platform only and the motion

should be stable.
2

In the other limiting case where 6p+O, the requirement for

stability is

a + p > 1 + p/a*. (82)

A careful examination of condition (82) reveals that a value of a>l-'. .,.

would insure stability of nutational motion in this case. This condition

corresponds to an oblate spacecraft (i.e., one that spins about its axis

of maximum moment of inertia) which, according to previous results, also

exhibits stable behavior.1

When energy dissipation is present on both the rotor and platform,

condition (80) can be examined for specific inertia parameters. Figures

3 through 7 are stability diagrams for 6p/Q vs. 6R/S1 for different

spacecraft parameters. Fig. 3 shows a critical case where a and p both

equal 0.5.

Some qualitative results can be obtained by examination of Figs. 4

through 7. These figures indicate that if the rotor inertia parameter

29
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is larger than the platform inertia parameter, then more of the area in

the region considered predicts stable motion, while if the platform

inertia parameter is larger, then more of the region predicts unstable

motion. In Figs. 4 and 5, the platform ratio is the larger and most of

the area predicts unstable motion, especially in Fig. 5 where the rotor

parameter is less than the critical value of 0.5. In Figs. 6 and 7, the

rotor ratio is the larger of the two and most of the area predicts

stable motion, especially in Fig. 7 where the rotor parameter is larger

than 0.5. It should be noted here that Figs. 3 through 7 are very

similar to the stability diagrams found by using a linear analysis.4

However, the results of this analysis contain the effects of inertia

parameters for both the rotor and platform, while the linear analysis

results depend only on the rotor inertia parameter.

Nonlinear Stability

Another result of the generalized method of averaging is that an

analytical approximation to the nutational motion can be found from

Eq. (74). Figures 8 through 11 show how the approximate solution of Eq.

(74) compares to the "exact" numerical solution of the full nonlinear

equations (see Appendix A). The full nonlinear equations were solved

using a fourth-order Runge-Kutta method.

To compare the results of the approximate solution to the Runge-

Kutta solution, two cases are considered; one with the platform inertia

parameter larger than the rotor inertia parameter and one with the rotor

inertia parameter the larger. The predicted subcases, one stable and

Wone unstable, of each case are considered. The nonlinear equations are

Is'.
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integrated with * = 0 and initial conditions of w10 f 0.2 rad/sec,

= 1.0 rad/sec and all others zero.

Figures 8 and 9 show the results obtained when the platform inertia

parameter is larger than the rotor inertia parameter and the approximate

results are in good agreement with the numerical results. Figures 10

and 11 show the results for the case when the rotor parameter is larger

\ ithan the platform inertia ratio and again the results agree well,

-especially in the stable case of Fig. 10. In Fig. 11, the transient

nanlinearities seem to increase the difference between the approximate

and numerical results. In all cases, the difference between the two

solutions appears to be a linear function of time.

Figures 12 and 13 show the results obtained for cases of no damping

on the rotor (Fig. 12) and no damping on the platform (Fig. 13),

respectively. These figures show the effects of neglecting the transia.nt

terms in Eqs. (36) and (50). When there is no damping, the oscillatory

terms never disappear. However, that these terms do eventually vanish if

only a small amount of damping is present is illustrated by Fig. 14.

% A the transient terms die out very rapidly when significantly large

damping constants are used

Figures 15 and 16 demonstrate the results of "fixing" the damper on

the rotor and platform, respectively. These simulation results were

obtained by setting the damping ratio to zero, while at the same time

setting RI R2 R3 = 0, for Fig. 15, and P = P3 = 0, for

Fig. 16, in the full set of equations. Figures 15 and 16 are analogous

to Figs. 12 and 13, respectively. Again, the analytical and numerical

results compare quite well, especially for the stable case.
;: S:

9%
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VII. CONCLUSIONS

The attitude motion of a model of a symmetric dual-spin spacecraft

containing spherical dampers on both its rotor and platform has been

$ investigated. A perturbation method which treats the effects of the

motion of the dampers as perturbing torques has been used in conjunction

with the generalized method of averaging. A stability analysis was

conducted for the constant speed rotor case and produced results that

agree well with the linear stability analysis described in Ref. 4.

However, the analysis of this thesis is more general in that more

information regarding the inertia parameters is obtained than is

possible using a conventional linear analysis. The generalized method

of averaging also provides an approximate solution for the nutational

motion which is not restricted to small angles. This solution agrees

well with results obtained by numerically integrating the full set of

nonlinear equations.
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APPENDIX A

4,, ,.,.,

The equations of motion of the spacecraft are derived by applying

Ruler's moment equation, to the spacecraft as a whole, then to the rotor

and platform dampers individually, and then to the rotor subsystem.

The angular momentum of the entire system about its center of mass

- S :is
H," fI W(-a

A I i 1 I + IP(wrl+t l ) + IR(wl'wl), (A-la)

112 = 2 + Ip(Wp 2 w 2 ) ++ IR(W41)2) (A-Ib)

and

H3 "JPw3 + JR(W3 +;) + IP(WP3 + 3 ) + IR(WR3+W3 + ;) (A-Ic)

Let I*M It + Ip + I and I* J + J +  'P + I

.S t t P 1  1 s P R 1 ~ R

Then, in terms of I,* and It*, one has

H I + RR (A-2a)1 t I +~ 1R"l + Rle

2 = 1W2 + IPWp 2 + IleR2 (A-2b)
and

H = *W 1 tj +( t4 (A-2c)
3 s 3 P TP3 + R3 + (j R+TR

Now, by applying Ruler's moment equation to Eqs. (A-2), one finds

that

M"+ w- H (A-3)

50

'4s"
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Since the spacecraft is not affected by external torques

H + wxH = 0 (A-4)

" "-" The component form of Eq. (A-4) is

"I +  1 R Ri + 23 -I3 H2
= 0 (A-5a)

I~i + Pp 2 +IR R2 + w 3 2 - 1 3H = 0 (A-5b)

IW 3 + Ip~p3 + IRWR3 + (JR+IR)4 + WIH 2 -W2HI = 0 (A-5c)

By substituting for HI . H., and H 3 and simplifying Eq. (A-5) one

gets

t w1 + i + iRRl + (JR4.IR)W2 + (I*-I*)wi

+ Ip((W P32 - WP2'3 ) + I R(W R3 2 -W R2 3 ) = 0, (A-6a)

Vw + IpWP2 + RR2 (JR+4R)W, + (I*-I*)w 1 W3

-+ tPl 3 "p3'P 1w ) + IR(WR 3 - WR3 W) 0 (A-6b)

and
+ I + I + (R+IR

s 3 P P3 &R3 R R

+ iP(wP2 1 P-W2) + IR(wR2w - wR1w2) = 0, (A-6c)

The platform-fixed components of angular momentum for the platform

dampers can be written as

h Ip(W +)(A-7a)
Pi p P

hp2  P ( 2W+ 2) (A-7b)

and
h I (W3+ W) (A-7c)
P3 P P3 3

p. S



Application of Euler's moment equation to the platform damper

"" yields

-- h + wxhp T Tp (A-8)

where T-p is a 3xl matrix of the components of the torque applied to

I~i the platform dampers. Equations (A-8) may be written in component form,

viz,

I p(i pl+I 1 ) + W 2h p3 - W 3h P2 T Tpl (A-9a)

IP( p2+ 2 )  3 3p1 - 1lhp3 = P2 (-

and

I p( P34 3 ) + W 1h P2 - W 2 hp = T p3 (A-9c)

One may replace T pi = -C p"pi for i = 1,2,3 and substitute for h Pi

' for i TM 1,2,3 to get the equations,

I p(; pl I 41 ) + I p(Wp3W 2-OP2 W3 ) + Cp.,apl = 0, (A-10a)

YP(P2+ 2) + 1P(wPIw3" rP3wI) + CpPP2 a 0 (A-I0b)

and

Ip( P3 3 ) + I p(W P2 W1-W Pl W2 ) + CPwP3 = O (A-1Oc)

Similarly, the angular momentum for the rotor dampers can be written as

h l I R(WRI+W0 )  (A-lla)

hR I R(W R+W2 (A-llb)

and

hR3 R R(R3+  3+ )(-lc

and the application of Euler's moment equation to the rotor dampers

%I provides
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4.4

" R( Ri+ 1 2hR3 -t3hR2 =  RI' (A-12a) !

.:R R2+ 2  + W 3h Rl - 1 h R3  TR2 (A-12b)

and

I(w R3+ w3
+ ;) + W 1hR2 - W 2hRI l TR3. (A-12c)

By using T CRRi, = 1,2,3, and substituting hRi for
RiR

i 1,2,3, one may put Eqs (A-12) in the form,

+ R (W+ CW = 0, (A-13a)
R (w 1i R ~ R32R23 WJ2  Rl I

R(R 2+R2(W R+ I W3- R3"W1 )  IJW 1 + CR R2 0 (A-13b)

and

3)+ IR(W + C 0. (A-13c)

R R3 3 R R 1 2 R 2+YR3 0

By considering the rotor as a system, one may derive three

equations for the rotation motion of the rotor; however, only the

equation corresponding to the rotation about e3 is needed. This

equation corresponds to the tenth degree of freedom of the system.

If {R} is used to denote the 3xl matrix of platform-fixed

components of the angular momentum of the rotor and Jt as its transverse

moment of inertia, the following equations may be written:
,-

'4 R, = J W Ip(W +W ) + I(W +W) (A-14a)

12 - Jt 2 + Ip p2 a2 ) + IR(WR2 W2  (A-14b)

,. and

(W - J 4(+) + I (W 4W + IR (W +W (A-14c)
R3 JR R3 P P3 3 R R3 3

4.
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Euler's moment equation may be applied to Eqs. (A-14) to get

M~ R ?R A-5

Considering only the third component of Eq. (A-15), one gets

0 1)1+)+ IR + I I(w w - w) 0* (A-16)

Va,

.0

,..4. .. '
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- APPENDIX B

The basic idea behind the method of averaging is to derive an

approximate solution of the nonautonomous system by considering in its

place an associated average system, which is autonomous. 6  For the

generalized method of averaging to be used, the differential equations

to be solved must first be cast in "normal form."6  The algorithm

described below applies to the system of differential equations in

this thesis which may be expressed as

-" = aX1 (x ,@,), (B-Ia)

$ s A(x) + aYl(X,4Y) (B-Ib)

!and.

T' = X(x) + aZ1 (x,,'), (B-ic)

where Xj, Yj, and Z1 are periodic with a period of 2w in the angles $

and T, and a is a small constant. An approximate solution to the

system which is valid through first order in a may be obtained by

solving the "averaged" equations:

x a AW(x), (B-2a)

0 A(;) + a B1 G) (B-2b)

and

..=X) + a c1 W. (B-2c)

.4 56
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Here

A""-'" P L 2wr 2w B-a
*,j 1 = 412  fo fo X1 (x,4 ,y)ddyB-a

2w 2w

A1  f - j 1 (x,,)d 4d , (B-3b)

4w2  0 0I 2n 2w

C2w 2w
C -= f Z](x,O,'1)didi , (B-3c)C 4r 2  0o 0

A(x) Ax) (B-4a)

and

X(x) = X(x). (B-4b)

The transformation from the averaged system is

x = x + a u1 (X,',i), (B-5a)

.:. 4 4 + a v1 (xi') (B-Sb)

and

T =T + w (,,i), (B-5c)

where
V..

27 21
u, - f f (Xl-A)did , (B-6a)

0 0

271 2w
Vl - 4 i I (Y1 -B1 )ddi' (B-6b)

0 0

and
., , 1 2vn 2wn

wi - - 277 (z-c 1 )dfsr . (B-6c)
0 0

In the present application, the expression for x is the one of dominant

;' - interest.
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